Proteomics Sponsored by Bio-Rad
Single-cell RNAseq differentiates cancer stem cells from healthy stem cells
Researchers have described a new single-cell RNA-sequencing approach, leveraging genomic and mitochondrial DNA mutations, that has the potential to differentiate normal stem cells from cancer stem cells. The article detailing the approach was published in Nature Communications on March 1. Read More
New technique detects unique folding patterns in RNA of SARS-CoV-2
Scientists have developed a new technique for determining alternative structural RNA shapes of the SARS-CoV-2 virus. These self-regulatory segments of RNA, called switches, could serve as potential antiviral drug targets, according to a communication published in Nature Methods on February 22. Read More
Proteomics helps researchers pick the best anti-SARS-CoV-2 nanobodies
A new high-throughput proteomics-based strategy to identify tiny antibody fragments -- called nanobodies -- may provide an efficient and effective method for developing therapeutics against the deadly SARS-CoV-2 virus -- including variants. The findings were published in Cell Systems on February 15. Read More
Multiomics approach profiles molecular characteristics of glioblastoma
A team of more than 40 investigators has created a profile of the genes, proteins, infiltrating cells, and signaling pathways of the deadly brain cancer glioblastoma. The findings could lead to better patient care, according to the authors of a new study published February 11 in Cancer Cell. Read More
Researchers use modified CRISPR tool to manipulate the epigenome
Bioengineers have developed a new way to engineer the human epigenome (chemical changes in the DNA) using a modified CRISPR-Cas9 system to target and activate proteins in the chromosome. This research, published in Nature Communications on February 9, expands on synthetic genome tools. Read More
New COVID-19 vaccine platforms emerge, are effective in preclinical models
Additional vaccine approaches are necessary to fight COVID-19. Two new vaccine candidates have demonstrated their effectiveness in animal models, and their potential clinical applications are described in two new research studies. Read More
Machine learning improves COVID-19 drug repurposing efforts
A novel machine-learning technique leverages gene expression data to improve drug repurposing and can even predict interactions between drug candidates and targets based on incomplete data. The framework, which was described in Nature Machine Learning on February 1, was applied to drug repurposing for COVID-19 to generate potential lead compounds in line with clinical evidence. Read More
SARS-CoV-2 hijacks lung cells for its own purposes
The first map of molecular responses of human lung cells to SARS-CoV-2 infection has been developed. It shows that the novel coronavirus causes significant protein and phosphorylation damage, effectively hijacking lung cells to enable its entry and propagation, according to a study published in Molecular Cell. Read More
New evidence shows SARS-CoV-2 mutations are not more transmissible
In direct contrast to previous research, researchers found that SARS-CoV-2 mutations are not tied to increased transmissibility in humans. The findings, published in Nature Communications on November 25, suggest that mutations such as D614G, while common, are neutral to viral evolution. Read More
Superspreader events drive global SARS-CoV-2 transmission
So-called "superspreader events" have been a major contributor to widespread transmission of the SARS-CoV-2 virus, according to a new analysis of outbreaks in Austria. Researchers used deep viral genome sequencing to trace the evolution of the pandemic in the country and how the virus spread beyond its borders, according to a study published in Science Translational Medicine on November 23. Read More
Connect
Science Advisory Board on LinkedIn
Science Advisory Board on Facebook
Science Advisory Board on Twitter