Molecular 'zipper' causes degeneration of the eye’s photoreceptors

By The Science Advisory Board staff writers

June 20, 2022 -- A research team from the University of Geneva, in collaboration with the University of Lausanne, has discovered that the absence of a molecular “zipper” formed by four proteins leads to cell death in retinal cells. The discovery of the essential role played by the zipper could lead to the development of therapeutic approaches for retinitis pigmentosa, a degenerative genetic eye disease.

Using an expansion microscopy technique that allows cells to be inflated without deforming them, the researchers were able to observe retinal tissue with a resolution not previously accomplished. The biologists focused on the structure of connecting cilia from mice that had -- or did not have -- a mutation in the gene for one of the four proteins.

"In the absence of the mutation, we found that these proteins ensure, just as we had previously seen in centrioles, the cohesion between microtubules by forming a zipper that closes as development proceeds," said Olivier Mercey, researcher in the Department of Molecular and Cellular Biology at the University of Geneva and first author of the study.


Copyright © 2022 scienceboard.net


Conferences
Microscopy and Microanalysis Meeting
July 31 - August 4
Portland, Oregon United States
Glasgow International Health Festival
August 24-27
Glasgow, Glasgow City United Kingdom
Pharma Competitive Intelligence Conference and Exhibition
September 21-22
Newark, New Jersey United States
BioProcess International (BPI) Conference
September 27-30
Boston, Massachusetts United States
Connect
Science Advisory Board on LinkedIn
Science Advisory Board on Facebook
Science Advisory Board on Twitter