Deleting certain gene leads to ovarian cancer remission: study

By The Science Advisory Board staff writers

September 22, 2022 -- A team of researchers has used a machine-learning algorithm to identify “backup genes” that only tumor cells use and could lead to new discoveries that support precision medicine efforts.

Recurrent loss-of-function deletions will inactivate tumor suppressor genes, but the deletion also involves "collateral damage" -- deleting essential genes in chromosomal proximity -- and doing so engenders dependence on paralogues that maintain similar functions. Paralogues are attractive anticancer targets, but what about uncovering collateral lethal genes?

Scientists from the University of Michigan and Indiana University sought to do just that in their study of mice with ovarian cancer (Nature Metabolism, September 21, 2022). Using metabolic fluxes and the machine-learning algorithm CLIM, they found the gene UQCR11 was often deleted along with a suppressor gene.

In those cases, cells would turn to MTHFD2, which has a noncanonical oxidative function that provides mitochondrial NAD+. The gene also regulates systemic metabolic activity by the paralogue metabolic pathway maintained by metabolic flux compensation.

The researchers confirmed the UQCR11-MTHFD2 collateral lethality in vivo with MTHFD2 inhibition that led to the complete remission of UQCR11-deleted ovarian tumors in six out of six mice. Using CLIM's machine learning and genome-scale metabolic flux analysis, they also illustrated the broad efficacy of targeting MTHFD2 despite distinct cancer genetic profiles co-occurring with UQCR11 deletion and irrespective of tumors' stromal compositions.

This sort of cellular behavior is common across most forms of cancer so the machine-learning algorithm could support treatment of multiple kinds of cancers, the researchers said.

New mRNA therapy shows promise for ovarian cancer, cachexia: mouse model
Researchers have developed what they contend is a first-of-its-kind messenger RNA (mRNA) therapy for combating ovarian cancer and cachexia, an associated...
Localized delivery of IL-2 by drug-producing cells eradicates cancer in mice
Implanting beads loaded with cytokine-producing cells eradicates advanced-stage mesothelioma tumors in mice, according to a study published on August...
Microscopic defects of healthy cells affect spread of ovarian cancer cells
Biophysics researchers have applied the concept of topological defects to investigate the spread of ovarian cancer cells. Using an in vitro model, the...
Personalized cell therapies offer hope for some of the toughest cancers
Complete with a long-term vision of developing a pipeline of oncology therapies that modulate the functional immune system, Sotio of the Czech Republic...
Scientists develop ultraspecific CAR T cells that kill only cancer cells
Scientists have devised a two-step engineering circuit that precisely targets solid tumors with chimeric antigen receptor (CAR) T cells. The engineering...

Copyright © 2022

Cell & Gene Meeting on the Mesa
October 11-13
Carlsbad, California United States
IDWeek 2022
October 19-23
District of Columbia United States
American Society of Human Genetics Annual Meeting
October 25-29
Los Angeles, California United States
International Society for Pharmaceutical Engineering Annual Meeting
October 30 - November 2
Orlando, Florida United States
Science Advisory Board on LinkedIn
Science Advisory Board on Facebook
Science Advisory Board on Twitter