Immune cells shown to kill MRSA before it enters the body

By Samantha Black, PhD, ScienceBoard editor in chief

October 29, 2019 -- Neutrophils could be responsible for controlling bacterial numbers of an antibiotic-resistant strain of Staphylococcus aureus (MRSA) on human skin before the bacteria get a chance to invade, according to a new study from Karolinska Institutet published in Cell Reports on October 29.

S. aureus is responsible for 76% of all skin and soft tissue infections. Over 20% of the population are carriers in the nasal cavity, and an additional 30% are believed to be transient carriers. Carriage of S. aureus is typically asymptomatic. However, it is important to understand colonization status, particularly in healthcare workers, as they are implicated in the transmission of MRSA.

Despite the clinical importance of MRSA, little is known regarding host mechanisms and how it becomes pathogenic. A limiting factor in study MRSA is the scarity of models for human-bacterial interaction. Therefore, the research team developed a "humanized" mouse model where human skin can be grafted onto mice for in vivo experimentation. Using this model, they studied how healthy adult human skin responds to colonizing MRSA.

The researchers observed transient MRSA colonization of the human stratum corneum over 10 days in the humanized mouse models. This was mediated by local neutrophil response to noninvasive bacteria. IL-8 is the primary immune signal that attracted neutrophils and initiates bacterial killing. This could explain why some people are only transient carriers of MRSA. The data also confirms that high doses of MRSA are needed to induce systemic infection in mouse models.

Using immunohistochemistry, the researchers were able to highlight the dynamic nature of human skin. They used this technique to track the migration of neutrophils through the layers of skin and the unique role that various levels play in colonization and infection.

"The skin is an incredibly dynamic biological environment where immune cells and microbes stand-off against one another to maintain some kind of equilibrium, a fraught peace," says Keira Melican, senior researcher at the Department of Neuroscience, Karolinska Institutet, who led the study. "Breaks in these equilibria typically lead to bad outcomes for humans, and understanding how this process works on the skin could have an impact on how we prevent and treat skin infection in the future."

The vast majority of host-bacterial interactions do not result in infection and studying how healthy human tissue responds to colonizing bacteria will help researchers understand the body keeps these populations in check and could lead to new ways to prevent infection and transmission of pathogens like MRSA.

"We hope that our humanized skin model will help make sure that our results are relevant to humans, and not just mice," says Melican.


Do you have a unique perspective on your research related to infectious disease research? Contact the editor today to learn more.

---

Join The Science Advisory Board today!



Copyright © 2019 scienceboard.net
 

Create an Account

Already have an account? Sign in Here

To access all ScienceBoard content create a free account now:



Email Address:  

First Name:

Last Name:

Learn about ScienceBoard

Get the latest life sciences research and industry news, delivered straight to your inbox, for free.

Why subscribe?

ScienceBoard is uniquely focused on the business of research, addressing the biggest problems that the biomedical industry face. You’ll get breaking news, events coverage, and deep dives into the science that drives innovation, delivered to your inbox daily.

 
I have read and agree to the privacy policy and terms of service and wish to opt-in for ScienceBoard.net.

Email Preferences



Letter from the Editor Please send me twice-weekly roundups of all the latest life research and industry news.
SAB Announcements Please send me the latest announcements from The Science Advisory Board and their partners.
Spotlight Receive notifications about new content, services, or educational resources designed to help you sharpen your skills and grow professionally.