New technique visualizes cells less than 10 nm

By The Science Advisory Board staff writers

August 3, 2022 -- A new photoswitching fingerprint analysis enables the optical imaging of dynamic interactions with other molecules in the cell. The analysis reliably allows for structural optical resolution in cells in the sub-10 nm range.

Using direct labeling methods, researchers at the Rudolf Virchow Center and the University of Würzburg in Germany have visualized a cell within a few nanometers, which allows for the revelation of molecular functions and the architecture of important components of cells (Nature Methods, August 1, 2022).

The photoswitching rates of dyes between an on and off state are strongly affected at distances below 10 nm due to various energy transfer processes between dyes, the researchers said. The resulting cluster of on-states during the first seconds of an experiment makes their individual localization more difficult. However, with photoswitching fingerprint and fluorescence decay time, the number of dyes present can be revealed along with information about their distances.

By incorporating unnatural amino acids into multimeric membrane receptors through genetic code expansion followed by bioorthogonal click labeling with small fluorescent dyes, the research team was able to show how site-specific labeling of proteins in cells can be achieved without spacing errors with sub-10 nm distances.

Next, the researchers plan to use photoswitching fingerprint analysis with single-molecule localization microscopy and patterned excitation schemes and DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) for reliable super-resolution imaging in cells with sub-10 nm resolution. Doing so could provide new insights into the molecular organization of cellular structures, organelles, and multiprotein complexes, as well as the structural articulation of protein structures using optical methods.

The researchers will present the new technology at the Translational Bioimaging Symposium from September 18-20 in Würzburg, Germany.


Copyright © 2022 scienceboard.net
 

Create an Account

Already have an account? Sign in Here

To access all ScienceBoard content create a free account now:



Email Address:  

First Name:

Last Name:

 
I have read and agree to the privacy policy and terms of service and wish to opt-in for ScienceBoard.net.

Email Preferences



Letter from the Editor Please send me twice-weekly roundups of all the latest life research and industry news.
SAB Announcements Please send me the latest announcements from The Science Advisory Board and their partners.
Spotlight Receive notifications about new content, services, or educational resources designed to help you sharpen your skills and grow professionally.